Cambridge IGCSE ${ }^{\text {TM }}$

CAMBRIDGE INTERNATIONAL MATHEMATICS

Paper 6 Investigation and Modelling (Extended)

You must answer on the question paper.
No additional materials are needed.

INSTRUCTIONS

- Answer both part A (Questions 1 to 3) and part B (Questions 4 to 6).
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You should use a graphic display calculator where appropriate.
- You may use tracing paper.
- You must show all necessary working clearly, including sketches, to gain full marks for correct methods.
- In this paper you will be awarded marks for providing full reasons, examples and steps in your working to communicate your mathematics clearly and precisely.

INFORMATION

- The total mark for this paper is 60 .
- The number of marks for each question or part question is shown in brackets [].

Answer both parts A and B.

A INVESTIGATION (QUESTIONS 1 to 3)

GIRARD'S SUMS (30 marks)

You are advised to spend no more than 50 minutes on this part.
Albert Girard, a 17th century French mathematician, investigated numbers, N, that can be written as the sum of two squares, $a^{2}+b^{2}$.
This task is about these numbers.
For this task, a and b are integers where $a \geqslant 0$ and $b \geqslant 0$.
1 (a) Complete the table.

a	a^{2}	b	b^{2}	$N=a^{2}+b^{2}$	$N \div 4$	
2	4	6	36	40	10	remainder 0
18		10			106	remainder 0
28		16	256			remainder 0
4			64		20	remainder 0
	144		196		85	remainder 0
20	400			884	221	remainder 0
		0	0	900	225	remainder 0

(b) (i) When $a=2$ and $b=4$ then $N=4 k$, so N is a multiple of 4 .

Find the value of k.
(ii) The values of a and b in the table are all even numbers. When $a=2 m$ and $b=2 n$ then $N=4 k$. Find an expression for k in terms of m and n.
(c) Not all multiples of 4 can be written as the sum of two square numbers.

Show that there are no values of a and b that give $k=11$.

2 (a) Complete the table.

a	a^{2}	b	b^{2}	$N=a^{2}+b^{2}$	$N \div 4$	
7	49	5	25	74	18	remainder 2
21		19		802	200	remainder 2
17	289			914		remainder 2
			49	170		remainder 2
1		1			remainder	

(b) When a is an odd number, $a=2 n-1$.
(i) Use algebra to explain why, when a is an odd number, $a^{2} \div 4$ has a remainder of 1 .
\qquad
(ii) Explain why, for the values in the table in part (a), N is always $4 k+2$.
\qquad
\qquad
(c) When a and b are both odd, $N=4 k+2$, so N is a multiple of 4 plus 2 .

Not all multiples of 4 plus 2 can be written as the sum of two square numbers.
Find all the values of k from 1 to 9 where $N=a^{2}+b^{2}$.

3 The values of N that can be written as the sum of two square numbers are of the form $4 k+r$, where the remainder r is a constant.
(a) Explain why r can be 0,1 or 2 but cannot be 3 .
(b) $\quad N=a^{2}+b^{2}$

Find all the values of N, where $10<N<30$, that are of the form $4 k+1$.

B MODELLING (QUESTIONS 4 to 6)

PRODUCTION BOUNDARIES (30 marks)

You are advised to spend no more than 50 minutes on this part.
This task is about the number of computer tablets and mobile phones a company makes and sells.
The company owns two factories, A and B .
Factory A makes A-tablets and A-phones.
Factory B makes B-tablets and B-phones.
A production boundary is a curve or line.
Points on the curve or line are the maximum numbers of the two items a factory can make when all resources are used.
It is the boundary of the region which shows all the combinations of the two items a factory can make.
4 Factory A makes t A-tablets and p A-phones each day.
The manager of factory A uses the model $p=9000-\frac{t^{2}}{1000}$ where $t \geqslant 0$, as the production boundary for the output of A-tablets and A-phones.
(a) On the axes below, sketch this model.

(b) When factory A makes 9000 A-phones it cannot make any A-tablets.

Write down the maximum number of A-tablets it can make when it does not make any A-phones.
(c) On Monday, factory A makes 1000 A-tablets.

On Tuesday, factory A makes 1500 A-tablets.
Find the decrease in the maximum number of A-phones it can make from Monday to Tuesday.
(d) (i) On Wednesday, factory A makes 5000 A-phones.

Use your graph from part (a) to explain why it is not possible for it to make 2500 A-tablets on Wednesday.
\qquad
\qquad
(ii) On the graph in part (a) shade the region that represents the numbers of A-phones and A-tablets that factory A can make.
(e) The company sells all the A-phones and A-tablets that factory A makes each day.

The company makes $\$ 160$ profit for each A-tablet and $\$ 100$ profit for each A-phone it sells. The greatest possible daily profit at factory A is $\$ 964000$.
(i) Write down a linear equation for this profit in terms of p and t.

Give your answer in the form $p=m t+c$.
(ii) Find the number of A-tablets and A-phones that factory A should sell in order to make a profit of $\$ 964000$.

$$
\begin{align*}
& t= \\
& p= \tag{3}
\end{align*}
$$

5 Factory B makes t B-tablets and p B-phones.
The table shows the maximum numbers of B-phones that factory B can make each day for some numbers of B-tablets.

Number of B-tablets t	Number of B-phones p
1000	8000
2000	6000
3000	4000
4000	2000

As the number of B-tablets increases, the number of B-phones decreases at a constant rate.
(a) (i) Draw the production boundary for factory B on the axes below.

(ii) Find the equation which models this production boundary, giving p as a function of t.
(iii) Factory B makes at least 1000 B-tablets but no more than 4000 B-tablets each day.

Write down the domain of the model in part (a)(ii).
(b) The company sells all the B-tablets and B-phones factory B makes each day. The company makes $\$ 200$ profit for each B-tablet and $\$ 190$ profit for each B-phone it sells. Each day, the manager of factory B expects to make the greatest possible profit.
(i) Find the greatest possible profit each day.
(ii) One day factory B has to make 2500 B-tablets.

On this day the profit is 73.3% of the greatest possible profit.
Work out the number of B-phones factory B makes on this day.

6 The company puts new machinery to make phones in factory A and factory B.
Factory A can now make double the number of A-phones.
Factory B can now make 10% more B-phones.
All other conditions remain the same.
(a) Complete the following models for the production boundaries at each factory after the changes. Use the models in Question 4 and Question 5(a).

$$
\begin{aligned}
& \qquad \text { Factory A: } p=\ldots \ldots . \ldots . ~ f o r ~ \\
& t
\end{aligned} \frac{0}{} \begin{aligned}
& \text { Factory B: } p=-2.2 t+11000 \text { for } \leqslant t \leqslant \ldots \ldots ~
\end{aligned} \text { (b) After the changes, the greatest possible profit made each day by factory A is } \$ 1830000 .
$$

